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Abstract 7 

Prominent theories of perception suggest that the brain builds probabilistic models of the world, 8 

assessing the statistics of the visual input to inform this construction. However, the evidence for this 9 

idea is often based on simple impoverished stimuli, and the results have often been discarded as an 10 

illusion reflecting simple “summary statistics” of visual inputs. Here we show that the visual system 11 

represents probabilistic distributions of complex heterogeneous stimuli. Importantly, we show how 12 

these statistical representations are integrated with representations of other features and bound to 13 

locations, and can therefore serve as building blocks for object and scene processing. We uncover 14 

the organization of these representations at different spatial scales by showing how expectations for 15 

incoming features are biased by neighboring locations. We also show that there is not only a bias, 16 

but also a skew in the representations, arguing against accounts positing that probabilistic 17 

representations are discarded in favor of simplified summary statistics (e.g., mean and variance). In 18 

sum, our results reveal detailed probabilistic encoding of stimulus distributions, representations that 19 

are bound with other features and to particular locations.  20 

Introduction 21 

How the brain represents the visual world is a long-standing question in cognitive science. One 22 

captivating idea is that the brain builds statistical models that describe probability distributions of 23 

visual features in the environment 1–7. By combining information about different features and their 24 

locations, the brain can then form representations of objects and scenes. Indeed, the idea that the 25 

brain represents feature distributions matches our conscious visual experience well. Most objects, 26 

such as the apple in Figure 1A, contain a multitude of feature values that can be quantified as a 27 

probability distribution, and we are seemingly aware of these feature constellations. Surprisingly, 28 

most studies of probabilistic representations do not test how such constellations are represented, 29 

assuming instead that a stimulus is described by a single value, such as the orientation of a Gabor 30 

patch in vision studies or the hue of an item in working memory experiments and that the only 31 

uncertainty comes from the sensory noise. While this unrealistic assumption was noted 3 early on, it 32 

is still prevalent, leaving open the possibility that the results can be explained with alternative 33 

models without assuming detailed representations of probability distributions 8–10.  34 

Here, we aim to close this gap and ask 1) if the visual system is capable of quickly forming precise 35 

representations of heterogeneous stimuli, representations that reflect the probability distribution of 36 

their features and 2) if such representations can be bound to other features or to spatial locations 37 

thereby serving as building blocks for upstream object and scene processing. 38 
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How can the brain represent heterogeneous stimuli, that is, stimuli that have more than one feature 1 

value? The visual system may track each feature value at each location to form a representation that 2 

would be identical to the stimulus. However, this would be extremely costly in terms of 3 

computational resources and unnecessary or even misleading for action because specific feature 4 

values can vary from one moment to another because of changes in viewpoint, lighting, etc. Another 5 

possibility is that only a few values, for example, the mean and the variance (“summary statistics” 6 
8,10–13), are represented. But this is also unlikely because multiple stimuli can have the same summary 7 

statistics while being quite different from each other. More realistically, the brain could follow the 8 

middle course by approximating feature distributions in the responses of neuronal populations that 9 

capture the important aspects of stimuli without being too detailed (Figure 1A).  10 

Previous studies have indeed shown that the visual system encodes the approximate distribution of 11 

visual features and uses them in perceptual decision-making 14,15. However, most of the findings are 12 

confined to relatively long-term learning of environmental statistics. If feature probability 13 

distributions are to be useful for everyday visual tasks, such as object recognition or scene 14 

segmentation, the brain needs to learn feature distributions quickly and effortlessly. Importantly, we 15 

have previously provided initial evidence that such rapid learning may occur in simple cases by 16 

studying how human observers learn to ignore distracting stimuli while searching the visual scene 16–17 
19. Observers were asked to find an odd-one-out item in a search array where distractor features 18 

(colors or orientations) were randomly drawn from a given probability distribution for several trials. 19 

A test trial was then presented with a target of varying similarity to previously learned distractors. 20 

We found that response times as a function of this similarity parameter followed the shape of the 21 

previously learned probability distribution, whether it was Gaussian, uniform, skewed, or even 22 

bimodal. That is, the search was slowed proportionally to how unexpected the target was, based on 23 

previously learned environmental statistics. This shows that representations of the shape of feature 24 

probability distributions in the visual input (similar to scene statistics20,21) is not limited to long-term 25 

learning, but can occur rapidly. 26 

Figure 1. General approach and methods. A: A typical stimulus used to study probabilistic perception involves an impoverished version of 
the environment, similar to a sketch of an apple (top-left). The hues of this stimulus can be quantified as a discrete probability distribution 
with only a few probable values (top-right). In contrast, real objects have a multitude of feature values corresponding to a complex-shaped 
probability distribution (middle). An accurate probabilistic model would maintain the important details of the distribution as much as 
internal noise permits, while a summary statistics model suggests that probabilities are represented as a combination of simple 
parameters, such as mean and variance (bottom). B: In our experiments, in each block observers searched for an odd-one-out line among 
distractors. On learning trials (upper-left), distractors were drawn from two distributions that were either mixed together or separated by 
location or color with one example of the spatial separation shown here. We assumed that observers would form a distractor 
representation by learning which distractors are more probable (bottom-left). On test trials (upper-right), we varied the similarity between 
the target and previously learned distractors. We then measured response times assuming that they should be monotonically related to 
the probability of a given target being a distractor based on a simplified ideal observer model (bottom-right). C: Example stimuli used on 
learning trials in Experiment 1. 
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This previous work was, however, limited to simple scenarios with a single feature distribution 1 

present, while real environments contain multiple objects and scene parts with different features. 2 

Furthermore, knowledge about statistics of a given feature (e.g., orientation) in isolation is not very 3 

useful. Observers need to know where in the external world a given feature distribution is and which 4 

other features should be bound with it (related to the “binding” problem 22) to recognize objects or 5 

segment scenes. Notably, such binding to spatiotopic locations and to other features does not 6 

necessarily require any additional neural machinery, because information about feature 7 

distributions can be readily encoded in neural population responses 2,3,23,24. Evidence for such 8 

effortless integration of probabilistic visual inputs is, however, still lacking. 9 

Ensemble averaging studies testing how observers estimate probabilistic properties of several sets of 10 

stimuli provide some initial support for this hypothesis. It is well known that observers can estimate 11 

the average of a perceptual ensemble, such as the mean orientation of a set of lines 11,25,26. 12 

Furthermore, they can estimate properties of subsets grouped by location or by other features 13 

although this causes performance detriments 27–32. However, this approach has only provided 14 

evidence for single-point estimates (the mean) but not for representations of feature probability 15 

distributions. Here, we aim to fill this gap and test how observers encode properties of feature 16 

distributions and associate them with both spatial locations and other features. 17 

Results 18 

In three experiments, observers viewed dressed-down versions of the environment that allowed 19 

precise control of the critical aspects of feature distributions. Observers searched for an unknown 20 

oddball target that differed from other items in orientation and judged whether it was in the upper 21 

or lower half of the stimulus matrix (Figure 1B). Observers did this quickly and accurately despite not 22 

knowing the target or distractor parameters in advance (average response time across experiments 23 

and conditions M = 754 ms, SD = 197, proportion correct M = 0.90, SD = 0.04). 24 

In all experiments, trials were organized in blocks of intertwined learning and test trials. In each 25 

block, during five to seven learning trials distractor stimuli were drawn randomly from the same 26 

probability distribution. On test trials, we varied the similarity of the current target to non-targets 27 

from preceding trials (Figure 1B). Using this data, we aimed to understand how observers represent 28 

complex heterogeneous stimuli such as visual search distractors.  29 

Bayesian observer model. How do behavioral responses depend on distractor representations from 30 

previous trials? To answer this question and to reconstruct distractor representations from the 31 

behavioral responses of our observers, we built a Bayesian memory-guided observer model linking 32 

observers’ internal representations of distractors to response times.  33 

Our participants located a target among a set of distractors and indicated if it is in the top or the 34 

lower part of the stimuli matrix. On each trial, the experimenter sets the parameters of the target 35 

feature distribution, 𝑝𝑝(𝑠𝑠𝑖𝑖|𝐿𝐿𝑇𝑇 = 𝑖𝑖), and of the distractor feature distribution, 𝑝𝑝(𝑠𝑠𝑖𝑖|𝐿𝐿𝑇𝑇 ≠ 𝑖𝑖), for each 36 

location 𝑖𝑖 = 1 …𝑁𝑁 in the stimuli matrix as well as the target location (𝐿𝐿𝑇𝑇). These parameters are 37 

then used to generate the stimuli at each location (𝑠𝑠𝑖𝑖). Neither the task parameters nor the stimuli 38 

are known to the observer.  39 
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Instead, at each moment in time t, the observer obtains sensory observations at each location (𝑥𝑥𝑖𝑖,𝑡𝑡). 1 

These observations are not identical to the stimuli because of sensory noise, 𝑝𝑝�𝑥𝑥𝑖𝑖,𝑡𝑡�𝑠𝑠𝑖𝑖�. In other 2 

words, a given stimulus might result in different sensory responses, and, conversely, a given sensory 3 

observation might correspond to different stimuli.  4 

To find the target, the observer compares for each location the probability that the sensory 5 

observations are caused by a target present at that location, 𝑝𝑝(𝐿𝐿𝑇𝑇 = 𝑖𝑖|𝐱𝐱𝑖𝑖) where 𝐱𝐱𝑖𝑖  are the samples 6 

obtained for location 𝑖𝑖 up until the response time, against the probability that they are caused by a 7 

distractor, 𝑝𝑝(𝐿𝐿𝑇𝑇 ≠ 𝑖𝑖|𝐱𝐱𝑖𝑖): 8 

𝑑𝑑𝑖𝑖 =
𝑝𝑝(𝐿𝐿𝑇𝑇 = 𝑖𝑖|𝐱𝐱𝑖𝑖)
𝑝𝑝(𝐿𝐿𝑇𝑇 ≠ 𝑖𝑖|𝐱𝐱𝑖𝑖)

(1) 9 

While this decision model is relatively simple, it provides a good intuition for observer behavior in 10 

the task (a more optimal model is provided in the Supplement but the conclusions do not depend on 11 

model choice). For this decision rule, the observer representation of distractor features learned from 12 

previous trials is related to response times: 13 

𝑅𝑅𝑅𝑅 ≈
𝐶𝐶1

𝐶𝐶0 − log 𝑝𝑝∗�𝑠𝑠𝑖𝑖�𝐿𝐿𝑇𝑇 ≠ 𝑖𝑖,𝛉𝛉𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝�
 (2) 14 

where 𝐶𝐶0 and 𝐶𝐶1 are constants (see details in Methods). In words, there is an inverse relationship 15 

between response times and the approximate likelihood that a given stimulus is a distractor, 16 

𝑝𝑝∗�𝑠𝑠𝑖𝑖�𝐿𝐿𝑇𝑇 ≠ 𝑖𝑖,𝛉𝛉𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝�, with the information obtained from previous trials described by a set of latent 17 

parameters, 𝛉𝛉𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 . When the probability that a stimulus at a given location (e.g., a test target) is a 18 

distractor is lower, response times are higher, and vice versa.  19 

Figure 2. The Bayesian observer model provides a way of reconstructing distractor representations. A: The Bayesian observer model. The 
stimuli 𝑠𝑠1 … 𝑠𝑠𝑁𝑁  at different locations are generated on each trial based on task parameters: the target feature distribution 𝑝𝑝(𝑠𝑠𝑖𝑖|𝐿𝐿𝑇𝑇 = 𝑖𝑖), the 
distractor feature distribution, 𝑝𝑝(𝑠𝑠𝑖𝑖|𝐿𝐿𝑇𝑇 ≠ 𝑖𝑖), and the target location 𝐿𝐿𝑇𝑇. At each moment in time and for each location, observers obtain 
samples of sensory observations 𝑥𝑥𝑖𝑖,𝑡𝑡 corrupted by sensory noise, 𝑝𝑝�𝑥𝑥𝑖𝑖,𝑡𝑡�𝑠𝑠𝑖𝑖�. Using knowledge about the sensory noise distribution and the 
approximation of feature distributions for targets and distractors obtained during learning trials, 𝑝𝑝∗(𝑠𝑠𝑖𝑖|𝐿𝐿𝑇𝑇 = 𝑖𝑖) and 𝑝𝑝∗(𝑠𝑠𝑖𝑖|𝐿𝐿𝑇𝑇 ≠ 𝑖𝑖), observers 
compute probabilities that the sensory observations at a given location correspond to the target, 𝑝𝑝(𝐿𝐿𝑇𝑇 = 𝑖𝑖|𝐱𝐱𝑖𝑖), or a distractor, 𝑝𝑝(𝐿𝐿𝑇𝑇 ≠ 𝑖𝑖|𝐱𝐱𝑖𝑖). 
These probabilities are combined into a decision variable 𝑑𝑑𝑖𝑖  used to make a decision or to continue gathering evidence if the currently 
available observations do not provide enough evidence for the decision (see details in Methods). B: The Bayesian observer model enables 
predictions about response times for a given representation of distractor stimuli (different example distributions are shown in blue and 
green). Crucially, there is a monotonic relationship between the two, with response times increasing with an increase in distractor 
probability. C: In our analyses, we used the monotonic relationship between probabilistic representations and response times to recover the 
representation of distractors (right) based on the response times on test trials (left). Here, the data from an example observer in the Spatial 
condition is split based on whether the target was located in the left (orange) or in the right (blue) hemifield. We then estimated the 
parameters of the representation, such as the mean expected orientation (dashed orange line), SD and across-distribution bias (the shift in 
the mean towards the other distribution relative to the true mean, shown by the dashed black line). 
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This model provides an important insight, namely, that observers’ representations are monotonically 1 

related to response times (Figure 2B). Hence, the relationship between the distribution parameters 2 

(mean, standard deviation, and skewness) reconstructed from RTs and from the true representation 3 

parameters would hold under any other monotonic transformation (for example, if RTs are log-4 

transformed and the baseline is subtracted as we do in our analyses; see also Figure S1). In other 5 

words, response times can be used to approximately reconstruct observers’ representations of 6 

distractors and estimate their parameters. 7 

Binding orientation probabilities to locations and colors. Having shown how observer response 8 

times should be related to the distractor representations, we now turn to the empirical data.  By 9 

analyzing observers’ response times to different test targets, we were able to infer which 10 

orientations were most difficult to find, resulting in the longest response times.  Crucially, we were 11 

able to reconstruct observers’ representations of the probability distributions that they were 12 

exposed to during learning trials (see Methods). 13 

The experiments differed in the structure of the learning trials. There were three conditions in 14 

Experiment 1. The learning trials in the Spatial condition were organized so that distractor 15 

distributions in the left and the right hemifield differed to mimic the clustering of similar visual 16 

stimuli in the real world. In the Color condition, instead of spatial grouping, different distractor 17 

subsets were grouped by color while individual items were randomly distributed. Finally, in the 18 

Baseline condition items from the two distributions had the same color and were randomly 19 

distributed (Figure 1C).  20 

Firstly, we report the results on the mean expected orientations (MEO) corresponding to the means 21 

of the recovered representations (Figure 2C). If observers ignore the separation of the two parts of 22 

the distribution, then MEO should match the mean of the overall distribution, but should differ 23 

between the distributions if the representations are bound to locations or colors. For example, if 24 

observers accurately learn the properties of the distributions, the MEO should be at +20° relative to 25 

the overall mean in the Spatial condition when the test line is presented in the hemifield that 26 

previously had distractors with an average relative orientation of +20°.   27 

We found that in the Spatial condition, observers’ representations in each hemifield followed the 28 

actual physical distractor distribution. The estimated MEO relative to the overall mean was M = 29 

−14.02° (SD = 6.02) and M = 14.90° (SD = 5.14) for probes for clockwise (CW) and counterclockwise-30 

shifted (CCW) distributions, respectively. The difference in MEO between the two distributions was 31 

much larger than zero (b = 28.94°, 95% HPDI = [25.34, 32.56], BF = 6.35 × 1017) showing that 32 

observers expected different orientations in different hemifields. We then computed the across-33 

distribution bias by recoding the errors in MEO relative to the true mean for each distribution so that 34 

positive values correspond to shifts towards the other distribution. That is, the bias here represents 35 
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by how much observers’ expectations deviated from the true mean orientation at a given location 1 

towards the mean orientation at the other location. For both hemifields there was a significant bias 2 

towards the other hemifield (M = 5.52°, 95% CI = [1.86, 9.14]). This shows that while observers 3 

represent the spatial separation between the two distributions, signals from the other hemifield still 4 

influence their responses.  5 

But does spatial separation help observers to track the feature probabilities? In the Baseline 6 

conditions, locations of the CW and CCW distributions were chosen randomly for each learning trial. 7 

We repeated the analysis described above, comparing the response to test targets at the location 8 

that had CW and CCW orientations on immediately preceding trials. We expected to find stronger 9 

across-distribution biases as there was no separation between the distributions across trials. 10 

Importantly, the across-distribution bias was larger in the Baseline (bias M = 11.35°, 95% CI = [7.71, 11 

15.00]) than the Spatial condition (effect of condition M = 5.84, 95% CI = [1.10, 10.58], BF = 108.24). 12 

In other words, the representations for each distribution were closer to the overall distribution 13 

mean in the Baseline than the Spatial condition. This argues that when the learned distributions are 14 

consistently presented at separate locations, observers can track them better than when they are 15 

mixed.  16 

Do observers integrate information about orientation probabilities and color? In the Color condition, 17 

the locations of the test targets were counterbalanced with respect to their colors, so we should 18 

only find differences in MEO if observers formed an association between color and orientation. 19 

Indeed, we found that the MEOs for the two distributions differed (b = 7.35, 95% HPDI = [1.30, 20 

13.06], BF = 148.04) although across-distribution biases were stronger (M = 16.30, 95% CI = [12.66, 21 

19.86]) than in the Spatial condition (M = 10.78, 95% CI = [5.99, 15.54], BF = 6.56 × 104). This means 22 

that if observers saw yellow lines shifted CW and blue lines shifted CCW relative to the overall 23 

Figure 3. Spatial structure of probabilistic representations. A: Example stimuli (left column), recovered mean expected orientations 
(middle column) and the across-distribution biases in mean expected orientations relative to the true orientations at a given location (right 
column). The stimuli show a single learning trial from the search task in the corresponding experiment. The mean expected orientation 
(MEO) was then computed at each location relative to the overall average orientation in the preceding learning block. For presentation 
purposes, the data were rearranged so that the distribution in the left hemifield (or in the columns 1,2,5,6 in the stripes condition) was 
oriented clockwise relative to the overall mean. The biases in MEO were computed by subtracting the mean orientation for a given part of 
the distribution (e.g., at the left/right hemifield in the Spatial condition of Experiment 1) and recoding the resulting errors so that the 
positive values correspond to a bias towards the other distribution. B: Average MEO by column of stimuli matrix in the spatial conditions. 
Small dots show the data for individual observers, larger dots and bars show means and 95% CI, respectively. Dashed horizontal lines show 
the true means for a given part of the distribution. 
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distractor mean during learning trials, they learned this association which affected their response 1 

times on subsequent test trials. Importantly, this demonstrates that observers can integrate 2 

information about likely orientations with information about other features (in this case color), even 3 

if there is no spatial information to guide this integration. 4 

Encoding orientation probabilities at different spatial scales. Having established that observers 5 

associate information about most likely orientations with specific locations or colors, we then asked 6 

if we can uncover the origins of the observed biases by assessing the recovered representations in 7 

the Spatial condition in more detail (for this and later analyses, we increased the sensitivity of our 8 

analyses by combining the data from the Spatial group in Experiment 1 with an additional sample 9 

that performed the same task; see Methods). We computed MEO using the aggregated data from all 10 

participants for each location in the stimuli matrix in this condition. As Figure 3 shows, across-11 

distribution biases were stronger closer to the boundary between the two hemifields. We then 12 

tested this observation by directly comparing MEOs for test trials with targets presented at the 13 

boundary (two central columns) between the hemifields against other test trials. We found that the 14 

bias was significantly larger at the boundary between the two distributions than in the other 15 

columns (M = 4.80° (SD = 6.99) and M = 9.04° (SD = 11.36), b = 4.23, 95% HPDI = [0.21, 8.32], BF = 16 

42.34; Figure 3B). However, the biases were also significantly above zero outside the boundary (BF = 17 

248). This suggests that the distribution representations are not homogenous and influence each 18 

other strongly when they are close in space, but this mutual influence also extends outside the 19 

immediate neighboring locations (see Discussion).  20 

Bias strength depends on similarity and spatial arrangement. In two follow-up studies, we further 21 

investigated observers’ representations of spatially-grouped heterogeneous stimuli. In Experiment 2, 22 

we tested whether the similarity between the distributions along the tested feature dimension 23 

(orientation) affects the strength of the across-distribution biases. We hypothesized that the bias 24 

should be stronger when the stimuli from the two distributions are more likely to have the same 25 

cause in the external world. For example, the boundary effect in Experiment 1 might occur because 26 

the stimuli close in space are more likely to belong to the same object. By the same reasoning, if the 27 

two distributions are less similar, they are less likely to have the same cause, and the biases should 28 

be weaker.  29 

To test this, we used the same spatial arrangement as in the Spatial condition in Experiment 1, but 30 

the distribution means were now 60° away from each other instead of 40° as in Experiment 1 (see 31 

example stimulus in Figure 3A). We found that again, MEO were close to their true values with M = 32 

26.35° (SD = 13.43) and M = -27.65° (SD = 10.65) for distributions centred at 30° and -30° relative to 33 

the overall mean, respectively. Importantly, while there was a strong bias at the boundary between 34 

the distributions, M = 19.05° (SD = 27.27), BF = 8.36, it was absent at other positions (bias M = 0.60° 35 

(SD = 8.65), with BF = 4.12 in favor of no bias). Experiment 2, therefore, shows that reducing the 36 

similarity between the distributions eliminates the biases except for the immediately adjacent 37 

locations.   38 

In Experiment 3, we tested whether an even more complex spatial arrangement would allow us to 39 

recover the “map” of observers’ expected orientations. To this end, the stimuli were organized in 40 

“stripes” of two matrix columns with two different distributions from Experiment 1 (with means 41 

separated by 40°) positioned at odd and even stripes (counterbalanced across blocks, Figure 3A). We 42 

found that observers expected clockwise-rotated orientations (M = 6.20°, SD = 9.91) at locations of 43 
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stripes rotated 20° clockwise relative to the overall mean and counterclockwise-rotated orientations 1 

(M = -11.034°, SD = 17.11) at other stripe locations. However, the across-distribution bias (M = 2 

11.70°, SD = 7.52) was stronger than in the Spatial condition in Experiment 1 (b = 5.90, 95% HPDI = 3 

[2.50, 9.33], BF = 4.30).  This demonstrates that while separating distributions in space helps 4 

observers track distributions (as shown in Experiments 1 and 2), the effects of spatial organization 5 

decrease as the organization becomes more complex.  6 

Higher-order parameters of probabilistic representations. Next, we asked whether observers’ 7 

representations contain more information about the distributions than just their average? We used 8 

the reconstructed distractor representations (Figure 4A) to estimate their circular standard deviation 9 

and circular skewness. The former corresponds to the expected variability among distractors, while 10 

the latter quantifies their symmetry.  11 

First, we hypothesized that if the variability of the distributions is encoded, then the expected 12 

variability would be higher when distractor distributions are less well separated. Indeed, we found 13 

that observers’ expectations about distractor variability differ between conditions (BF = 2.03 × 105) 14 

with lower SD when the distractors were separated by hemifields (M = 33.3, 95% HPDI = [32.2, 34.4] 15 

for the Spatial condition with 40° separation and M = 32.7, 95% HPDI = [31.1, 34.2] for 60° 16 

separation) compared to other conditions (M = 35.9, 95% HPDI = [34.4, 37.5] in the color condition, 17 

M = 34.4, 95% HPDI = [32.9, 35.9] for the stripes arrangement condition). When the two 18 

distributions were less well separated, observers were more uncertain in their estimates, leading to 19 

distractor representations with higher SD’s (Figure 4B).  20 

We also expected that the distribution presented at the tested location or in the tested color would 21 

weigh more highly in the resulting representation, causing an asymmetry. Alternatively, if observers 22 

only use the mean and variance to encode the distribution (as assumed by “summary statistics” 23 

accounts), then the represented distribution should be symmetric. We found that observers’ 24 

Figure 4. Recovered average representations and their parameters across experiments and conditions. A: The black curves show the 
average representation while representations for individual observers are shown in light gray. Dashed horizontal lines show the mean of 
the representation (black) and the true mean of the stimulus distributions (light gray). Note that the representations are aligned so that 
when two distributions are present, the true mean at the tested location is clockwise (-20° or -30°) while the other mean is 
counterclockwise (20° or 30° relative to the true mean). B: Estimated parameters (bias, SD and skewness). Large dots and errorbars show 
the mean across observers for a given parameter and the associated 95% confidence intervals. Smaller dots show data for individual 
subjects.  
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representations were asymmetric in all conditions, with a higher probability mass at the side 1 

corresponding to the distribution presented at the tested location or in the tested color, M = -0.03, 2 

95% CI = [-0.04, -0.02]. Notably, however, no differences between conditions were found, BF = 3 

1.99 × 10−6, indicating that symmetry is not affected by the way the distributions are organized in 4 

the display. In sum, observers represent not only the average stimulus values but also their 5 

variability, and the representations are skewed towards distributions presented at other locations or 6 

in different colors. 7 

Discussion 8 

Our main hypothesis was that observers extract information about probabilities of visual features 9 

from heterogeneous stimuli and bind the resulting probabilistic representations with locations on 10 

the one hand and other features on the other. Our results support both these proposals very clearly, 11 

demonstrating how the visual system can build probabilistic representations of the visual world by 12 

extracting information about the features of complex heterogeneous stimuli.  13 

A visual search task allowed us to uncover representations of heterogeneous distractors. We 14 

formulated a Bayesian observer model and demonstrated analytically and through simulations that 15 

response times are a monotonic function of observers’ expectations about distractor orientations, 16 

supporting earlier empirical findings 16–19. Using this knowledge, we were able to estimate the 17 

characteristics of observer representations – their means, precision, and skewness – and study how 18 

they vary depending on whether observers can associate them with locations or with other, task-19 

irrelevant features, such as color.    20 

We found that observers encode the feature distributions in scenes containing two different 21 

distributions. The representations generally follow the physical distribution of the stimuli for a given 22 

location or a given color, but importantly, observers are also biased towards the other distribution. 23 

The strength of the bias depends on the degree of separation between the distributions. When the 24 

distributions were separated in space, observers’ representations of one distribution were less 25 

influenced by the other distribution, compared to when they were separated by color or were 26 

intermixed (Baseline condition). Furthermore, as we found in Experiment 3, more complex spatial 27 

arrangements (“stripes”) increased the biases towards the other distribution. In sum, observers bind 28 

probabilistic representations of visual features to locations and other features, but such binding is 29 

not impenetrable, reminiscent of “illusory conjunctions” of discrete feature values 33.  30 

We were then able to recover the representation of the distribution at different spatial scales. We 31 

found that for spatial separation, the biases are stronger at the boundary between the two 32 

distributions. This is reminiscent of a hierarchical organization of information about feature 33 

probabilities within a scene proposed for perceptual ensembles 11,25. Such hierarchical ensemble 34 

models suggest that observers represent information about feature probabilities at different levels: 35 

for example, the orientation statistics at a particular location are combined to form a representation 36 

for a group of items, which are, in turn, combined to form an overall ensemble representation. Our 37 

results agree with this idea: the stimuli observers expect at a given location depend not only on what 38 

was previously shown at this location but also on stimuli presented at other locations. Crucially, 39 

biases were also present for the Color condition as well as for the non-boundary locations in the 40 

Spatial condition of Experiment 1. This indicates that the results cannot be explained by purely local 41 

summation of the inputs. It remains to be tested, whether there are actual separable 42 

representations of probability distributions at different levels, or just a unified spatio-featural map 43 

guiding observer responses. 44 
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We hypothesized that the representations should be more biased by each other when they are more 1 

likely to have the same cause in the external world. This could provide a normative explanation for 2 

the boundary effect: sensory input from adjacent locations is likely to be caused by the same object 3 

and should therefore be integrated while locations far away from each other should be treated 4 

separately. Similarly, for example, in multisensory integration studies, auditory and visual signals are 5 

less likely to be integrated when there is a large discrepancy in their locations 34,35. However, in 6 

Experiment 1 we found across-distribution biases at locations far from the other distribution. We 7 

reasoned that this is because the stimuli themselves are similar enough to be potentially caused by 8 

the same object, and the inputs are therefore integrated even from non-neighboring locations. In 9 

Experiment 2, we tested this explanation by asking if the similarity between the distributions 10 

themselves in the tested feature domain (orientation) also plays a role. We found that when the 11 

distributions were made more dissimilar, the biases were observed only at the boundary between 12 

the distributions but not at other locations. That is, observers no longer take into account the input 13 

from non-neighboring locations, when stimuli are dissimilar. This supports the proposed normative 14 

explanation and suggests that the principles of information integration for heterogeneous visual 15 

inputs are the same as for other cases, such as multisensory integration or estimation of complex 16 

visual features 35,36.  17 

We then tested if observers represent more than just the mean distractor orientation. We found 18 

that observers represent the distractor variability (i.e., the standard deviation or width of their 19 

representations), which varies in a predictable fashion with the separability between distractor 20 

distributions. When the distractor distributions are poorly separated (e.g., by color only or are 21 

organized in “stripes”), their representations are wider, indicating more uncertainty. Furthermore, 22 

the representations are asymmetric where the tail of the distribution corresponding to the 23 

orientations matching the tested location or color is fatter. That is, observers do not simply 24 

represent the distractors with a (biased) mean and variance, their representations have a complex 25 

shape with more relevant information (e.g., previous orientations at a tested location) weighted 26 

higher and less relevant information (e.g., previous orientations at the other locations) having lower 27 

weight, but still influencing the outcome.  28 

These findings indicate that observers represent information about distractor features as a 29 

probability distribution rather than only in terms of the summary statistics, in contrast to popular 30 

ideas of simple “summary statistics”. For example, Treisman 12 argued that statistical processing is a 31 

distinct mode of perceptual and attentional analysis of stimulus sets. She proposed that because of 32 

limited attentional capacity statistical summaries are generated that include the mean, variance, and 33 

perhaps the range. These summaries enable rapid assessment of the general properties and layout 34 

of natural scenes 29,37. Similarly, Rahnev 10,38 argued that observers represent only a summary 35 

consisting of the most likely stimulus and the associated strength of evidence, and Cohen et al. 8  36 

used summary statistics to explain the richness of consciousness experience. Our results argue 37 

against such views, since the representations that are bound together are far more detailed than 38 

this implies. That is, the brain might instead approximate the visual input by using a complex set of 39 

parameters to provide accurate descriptions of feature probabilities 39,40.  40 

A recent finding may explain why many previous studies have supported summary statistics 41 

proposals. Hansmann-Roth et al. 41 reasoned that optimal behavior requires the encoding of full 42 

feature distributions, not only summaries, but observers might be unable to explicitly report the full 43 

distribution. This is analogous to how difficult it might be to verbally describe the variety of colors of 44 

an apple without resorting to simplifications (see  Figure 1A). Hansmann-Roth et al. tested 45 

observers’ representations both implicitly and explicitly and while explicit judgments were limited to 46 
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the mean and variance of feature distributions, implicit measures revealed detailed representations 1 

of the same distributions. More information was therefore available to observers than studies of 2 

summary statistics, that have mostly relied on explicit measures, have indicated. Crucially, 3 

Hansmann-Roth et al. were able to uncover why this is: revealing these detailed representations 4 

requires implicit methods, such as we use here.  5 

In our experiments, observers learn the distractor feature by combining inputs from heterogeneous 6 

stimuli across several trials in each block, and it can be argued that this is different from perceiving a 7 

single stimulus on a single trial. However, the visual cortex aggregates information at many different 8 

timescales 42. Even on a single trial, perception unfolds in time and at each moment is dependent on 9 

what has been seen before. And even for a simple stimulus, the visual cortex receives inputs from 10 

many retinal neurons that are affected by processing noise, potentially indistinguishable from the 11 

input from varying features. Indeed, this is why stimulus variability (“external noise”) is often used to 12 

manipulate visual uncertainty 43,44. We therefore believe that distinguishing “simple” and “complex” 13 

perception is impossible. However, our results clearly show that information about feature 14 

probabilities is available for visually-guided behavior. 15 

Taken together, our results show that observers can not only encode probabilities of features from 16 

heterogeneous stimuli in detail but also integrate them with both locations and other features that 17 

have different distributions. These results arguably represent the strongest support yet for the long-18 

standing idea that the brain builds probabilistic models of the world 1,5–7,24,45,46 and show that 19 

probabilistic representations can serve as building blocks for object and scene processing. Notably, 20 

such representations are not simply limited to summary statistics (e.g., a combination of mean and 21 

variance8). Our results also indicate that observers do not represent physical stimuli precisely, but 22 

instead construct an approximation influenced by input from other stimuli. This probabilistic 23 

perspective stands in sharp contrast to views where discrete features of individual stimuli are either 24 

bound together to form objects or processed “statistically” 12,40. Instead, we suggest that the 25 

probabilistic representations are automatically bound to locations and other features since such 26 

binding occurred even though it was not required in the task. Probabilistic representations are 27 

therefore not acquired in isolation but constitute an integral part of perception.  28 

Methods 29 

Participants. In total, eighty observers (fifty female, age M = 23.10) participated in the experiments. 30 

Twenty observers (ten female, age M = 25.45) participated in the first experiment (Baseline, Spatial, 31 

and Color conditions) split across two sessions. Twenty observers (fourteen female, age M = 25.00) 32 

participated in Experiment 2 (“Spatial, 60° distance”) and another twenty (thirteen female, age M = 33 

25.45) in Experiment 3 (“Spatial, stripes”). Finally, the data from additional twenty observers 34 

(thirteen female, age M = 16.50) were collected for the Spatial condition of Experiment 1 to increase 35 

the sensitivity of the spatial analyses. 36 

All were staff or students at the Faculty of Psychology, St. Petersburg State University, Russia, or the 37 

University of Iceland, Iceland. The experiment was approved by local ethics boards and was run in 38 

accordance with the Helsinki declaration. Participants at St. Petersburg State University were 39 

rewarded with 500 rubles (approx. 8 USD) per hour each, participants at the University of Iceland 40 

participated without additional reward. All gave their informed consent before participating. The 41 

participants were naïve to the purposes of the studies. Participants were given ample time for 42 

training until they felt comfortable doing the task (the training time ranged from 5 minutes to one 43 

hour depending on the participant). 44 
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Procedure. In Experiment 1, each participant performed a search task in five conditions. In each 1 

condition on each trial, observers were presented with 8×8 matrices of 64 lines (line length: 0.71° of 2 

visual angle; matrix size: 16×16°; uniform noise of ±0.5° was added to each line coordinate). The goal 3 

was to find the odd-one-out line whose orientation differed most from the others. Sessions were 4 

separated into blocks of 5 to 7 learning trials followed by 1 or 2 test trials (the number of trials 5 

chosen randomly for each block; the variation in the number of trials was introduced to decrease the 6 

effect of temporal expectations47). During learning trials, the overall mean of distracting items varied 7 

randomly with half of the distractors drawn from one distribution and the other half from another 8 

distribution with the properties of distributions differing between conditions:  9 

Baseline: two truncated Gaussian distributions with SD = 10° and range of 40°, with means separated 10 

by 40° (±20° relative to the overall mean), all stimuli had the same color (white), positions for each 11 

line within the matrix were chosen randomly.  12 

Spatial: two distributions (either a truncated Gaussian with SD = 10° and a range of 40° or uniform 13 

with the range of 40°) with means separated by 40° (±20° relative to the overall mean), all stimuli 14 

had the same color (white), one distribution was shown in the left half of the matrix, the other in the 15 

right half. 16 

Color: the same distributions as in the Spatial condition were used, but lines drawn from one 17 

distribution were blue, while lines from the other distribution were yellow. Positions for each line 18 

within the stimuli matrix were chosen randomly.   19 

In all cases, two lines were added to each distractor distribution with their orientation equal to the 20 

minimal and maximal values from that distribution range. As a result, Gaussian and uniform 21 

distributions always had the same range. Target orientation on each trial was drawn randomly from 22 

a uniform distribution ranging between 60° and 120° relative to the mean distractor orientation.  23 

On test trials, distractors came from a single Gaussian distribution with SD = 10° (range-restricted in 24 

the same way as described above), while target orientation was determined in the same way as on 25 

the prime trials. In the color condition, half of the lines from that distribution were blue, half were 26 

yellow.  27 

The Baseline condition had 2304 trials, while the Spatial and Color conditions had 5376 trials each 28 

with the higher number of trials used in the latter case to counterbalance additional factors 29 

(distribution type combinations).  30 

Experiments 2 and 3 generally followed the same procedure as the Spatial condition of Experiment 31 

1. In Experiment 2 the means of the distributions were separated by 60° (±30° relative to the overall 32 

mean) instead of 40° in Experiment 1. In Experiment 3, the two distributions were separated by 40°, 33 

as in Experiment 1, but arranged in “stripes” so that the lines drawn from the first distribution were 34 

positioned in the 1st, 2nd, 5th, and 6th columns of the stimuli matrix while the other columns were 35 

populated with lines from the second distribution. 36 

Data processing. For our main analyses of interest, incorrect responses were excluded and response 37 

times were log-transformed and centered by subtracting the mean for each participant. Then, to 38 

reduce the noise in RT measurements, spatial and featural confounders were removed. First, the 39 

effect of the distance between target locations on consecutive trials and the effect of the target 40 

location were removed by regressing out the fifth-degree polynomials of the absolute distance (in 41 

degrees of visual angle) between the target locations on the current and the previous trials and the 42 

current targets horizontal and vertical coordinates. Then, we also removed potential influences from 43 
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the well-known oblique effect (the search speed differs between oblique and cardinal stimuli 45,48 by 1 

regressing out the fifth-degree polynomials of target and distractor obliqueness computed as an 2 

absolute distance in degrees to the nearest cardinal orientation. The regression was run separately 3 

for each experiment and condition.  4 

To reconstruct observers’ distractor representations, we used the response times on the first test 5 

trial in each block. We then converted response times as a function of the similarity between the 6 

test target and previous distractor mean to a probabilistic representation and estimated its 7 

parameters.  8 

To convert the noisy response times into probabilities, we first smoothed RT as a function of the test 9 

target and previous distractor mean using the local regression approach (a generalization of the 10 

moving average) for each observer in each condition. To account for circularity, we appended 1/6 of 11 

the data from each end of the orientation space to the opposite end before smoothing. In analyses 12 

applied to each stimulus location, we further assumed that RTs are a smooth function of the stimuli 13 

matrix row within the local regression while columns of the stimuli matrix were treated 14 

independently. We then transformed a smoothed RT function into a probability mass function by 15 

subtracting the baseline and normalizing to one. Finally, we computed the parameters of the 16 

recovered probabilistic representation: the mean expected orientation (circular mean), circular 17 

standard deviation, and circular skewness as defined by Pewsey49. Note that under the hypothesized 18 

Bayesian observer model, the estimated standard deviation and skewness are monotonically related 19 

to the true parameters of the distractor representation but are not identical to it (additionally 20 

confirmed in simulations, Figure S1). 21 

Data analysis. Unless stated otherwise, we used Bayesian hierarchical regression with brms50 22 

package in R. Note that while we include Bayes factor values in the description of the results, we 23 

were mostly interested in measuring the effects of the variables of interest in our models, hence the 24 

models included the default flat (uniform) priors for regression coefficients. Given that Bayes factors 25 

are heavily prior-dependent, we believe that the information provided by the 95% highest-density 26 

posterior intervals (HDPI) is more useful for judging the results than the Bayes factors. To make sure 27 

that the conclusions are not dependent on the particular analytic approach, we repeated the 28 

analyses using the conventional frequentist statistical test with the same results (the report using 29 

this approach is provided alongside the data in an online repository, see Data availability 30 

statement).  31 

Bayesian observer model. In our experiments, participants located a target among a set of 32 
distractors and indicated if it is in the top or the lower part of the stimuli matrix. On each trial, the 33 
experimenter sets the task parameters, namely, parameters of the target distribution, 𝑝𝑝(𝑠𝑠𝑖𝑖|𝐿𝐿𝑇𝑇 = 𝑖𝑖), 34 
and parameters of the distractor distribution, 𝑝𝑝(𝑠𝑠𝑖𝑖|𝐿𝐿𝑇𝑇 ≠ 𝑖𝑖), for each location 𝑖𝑖 = 1 …𝑁𝑁 in the stimuli 35 
matrix as well as the target location, 𝐿𝐿𝑇𝑇. These parameters were then used to generate the stimuli at 36 
each location, 𝑠𝑠𝑖𝑖.  37 
Neither the task parameters nor the stimuli are known to the Bayesian observer. Instead, at each 38 

moment in time t, the observer obtains sensory observations at each location, 𝑥𝑥𝑖𝑖,𝑡𝑡. These 39 

observations are not identical to the stimuli because of the presence of sensory noise, 𝑝𝑝�𝑥𝑥𝑖𝑖,𝑡𝑡�𝑠𝑠𝑖𝑖�. 40 

That is, a given stimulus might result in different sensory responses, and, conversely, a given sensory 41 

observation might correspond to different stimuli. We assume that the observations are distributed 42 

independently at each location and at each moment in time.  43 

To make an optimal decision in a particular task, the observer needs to know the relationship 44 

between the sensory observations and the task-relevant quantities. For the visual search task used 45 
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in our study, we assumed that observers compare for each location the probability that the sensory 1 

observations are caused by a target present at that location, 𝑝𝑝(𝐿𝐿𝑇𝑇 = 𝑖𝑖|𝐱𝐱𝑖𝑖) where 𝐱𝐱𝑖𝑖 =2 

{𝑥𝑥𝑖𝑖,1, 𝑥𝑥𝑖𝑖,2, … , 𝑥𝑥𝑖𝑖,𝑡𝑡=𝐾𝐾} are the samples obtained for location i up until the time K, against the 3 

probability that they are caused by a distractor, 𝑝𝑝(𝐿𝐿𝑇𝑇 ≠ 𝑖𝑖|𝐱𝐱𝑖𝑖): 4 

𝑑𝑑𝑖𝑖 =
𝑝𝑝(𝐿𝐿𝑇𝑇 = 𝑖𝑖|𝐱𝐱𝑖𝑖)
𝑝𝑝(𝐿𝐿𝑇𝑇 ≠ 𝑖𝑖|𝐱𝐱𝑖𝑖)

(3) 5 

The observer then decides that a given item is a target as soon as the decision variable at a given 6 

location reaches a certain threshold 𝐵𝐵. Although this decision rule is not fully optimal, because the 7 

observer makes a decision for each item individually, it greatly reduces the task complexity, and we 8 

believe that it allows for a more realistic model (the simulations based on a more complex but more 9 

optimal model are described in the supplement and lead to identical conclusions).  10 

The observer can compute the probability of hypotheses 𝐿𝐿𝑇𝑇 = 𝑖𝑖 and 𝐿𝐿𝑇𝑇 ≠ 𝑖𝑖 given the sensory data 11 

using the Bayes rule: 12 

𝑝𝑝(𝐿𝐿𝑇𝑇 = 𝑖𝑖|𝐱𝐱𝑖𝑖) =
𝑝𝑝(𝐱𝐱𝑖𝑖|𝐿𝐿𝑇𝑇 = 𝑖𝑖)𝑝𝑝(𝐿𝐿𝑇𝑇 = 𝑖𝑖)

𝑝𝑝(𝐱𝐱𝑖𝑖)
(4) 13 

In words, the probability of a hypothesis that a target is at the given location, 𝐿𝐿𝑇𝑇 = 𝑖𝑖, for a set of 14 

sensory observations  𝐱𝐱𝑖𝑖  is equal to the likelihood of the data given this hypothesis multiplied by a 15 

prior probability for this hypothesis 𝑝𝑝(𝐿𝐿𝑇𝑇 = 𝑖𝑖) and divided by the probability of the observations 16 

𝑝𝑝(𝐱𝐱𝑖𝑖).  17 

Assuming that the prior 𝑝𝑝(𝐿𝐿𝑇𝑇 = 𝑖𝑖) = 1
𝑁𝑁

= 1 − 𝑝𝑝(𝐿𝐿𝑇𝑇 ≠ 𝑖𝑖) is the same for all locations, the decision 18 

variable can then be rewritten in log-space as the difference in the log-likelihoods in favor of the two 19 

hypotheses: 20 

log 𝑑𝑑𝑖𝑖 = � log �𝑝𝑝�𝑥𝑥𝑖𝑖,𝑡𝑡�𝐿𝐿𝑇𝑇 = 𝑖𝑖��
𝐾𝐾

𝑡𝑡=1
−� log �𝑝𝑝�𝑥𝑥𝑖𝑖,𝑡𝑡�𝐿𝐿𝑇𝑇 ≠ 𝑖𝑖��

𝐾𝐾

𝑡𝑡=1
+ log �

1
𝑁𝑁 − 1

� (5) 21 

What are the probabilities of sensory observations under each hypothesis, 𝑝𝑝�𝑥𝑥𝑖𝑖,𝑡𝑡�𝐿𝐿𝑇𝑇 = 𝑖𝑖� and 22 

𝑝𝑝�𝑥𝑥𝑖𝑖,𝑡𝑡�𝐿𝐿𝑇𝑇 ≠ 𝑖𝑖�? To compute them, the observer needs to take into account how the stimuli are 23 

distributed under each hypothesis and how the sensory noise is distributed for each stimulus. We 24 

assume that the sensory noise distribution is known for the observer through long-time exposure to 25 

the visual environment (that is, the observer knows 𝑝𝑝�𝑥𝑥𝑖𝑖,𝑡𝑡�𝑠𝑠𝑖𝑖�).  26 

However, to determine how probable it is that sensory observations correspond to the search 27 

target, the observer must also know what defines targets and distractors. The experimenter knows 28 

that only certain orientations describe a target, but the observer is not omniscient and does not 29 

know the true distributions of target and distractor stimuli, approximating them instead as 30 

𝑝𝑝∗(𝑠𝑠𝑖𝑖|𝐿𝐿𝑇𝑇 = 𝑖𝑖) and 𝑝𝑝∗(𝑠𝑠𝑖𝑖|𝐿𝐿𝑇𝑇 ≠ 𝑖𝑖). Then the probability of sensory observations under each 31 

hypothesis can be computed as: 32 

𝑝𝑝�𝑥𝑥𝑖𝑖,𝑡𝑡�𝐿𝐿𝑇𝑇 ≠ 𝑖𝑖� = �𝑝𝑝�𝑥𝑥𝑖𝑖,𝑡𝑡�𝑠𝑠𝑖𝑖�𝑝𝑝∗(𝑠𝑠𝑖𝑖|𝐿𝐿𝑇𝑇 ≠ 𝑖𝑖)𝑑𝑑𝑠𝑠𝑖𝑖 (6) 33 

The probability distributions 𝑝𝑝∗(𝑠𝑠𝑖𝑖|𝐿𝐿𝑇𝑇 = 𝑖𝑖) and 𝑝𝑝∗(𝑠𝑠𝑖𝑖|𝐿𝐿𝑇𝑇 ≠ 𝑖𝑖) correspond to the observer’s 34 

approximate representation of target and distractor distributions. Notably, each of them can be 35 

further separated into the representation based on the previous trials and the one based on the 36 

current trial: 37 
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𝑝𝑝∗(𝑠𝑠𝑖𝑖|𝐿𝐿𝑇𝑇 ≠ 𝑖𝑖) ≡ 𝑝𝑝(𝑠𝑠𝑖𝑖|𝐿𝐿𝑇𝑇 ≠ 𝑖𝑖,𝛉𝛉) = 𝑝𝑝�𝑠𝑠𝑖𝑖�𝐿𝐿𝑇𝑇 ≠ 𝑖𝑖,𝛉𝛉𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝�𝑝𝑝(𝑠𝑠𝑖𝑖|𝐿𝐿𝑇𝑇 ≠ 𝑖𝑖,𝛉𝛉𝑐𝑐𝑐𝑐𝑝𝑝𝑝𝑝) (7) 1 

with 𝛉𝛉 = �𝛉𝛉𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 , 𝛉𝛉𝑐𝑐𝑐𝑐𝑝𝑝𝑝𝑝� corresponding to the independent latent variables describing the 2 

parameters of the previous and the current trial by the observer (similar equations related to targets 3 

are omitted for brevity). In our experiments, by design, the parameters of the current trial are 4 

controlled with respect to the current stimuli (i.e., the distractors on the current test trial are drawn 5 

from a distribution with a mean from 60° to 120° off the current test target). Hence, only 6 

𝑝𝑝�𝑠𝑠𝑖𝑖�𝐿𝐿𝑇𝑇 ≠ 𝑖𝑖,𝛉𝛉𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝� matters for relative changes in response times.  7 

In our analyses, we wanted to reconstruct the representation of distractor stimuli using the response 8 

times for different test targets. Because the decision time is proportionate to the number of samples 9 

when the sampling frequency is constant, we aimed to relate the number of samples K to an 10 

observer’s approximate representation of distractors based on the previous trials 11 

𝑝𝑝�𝑠𝑠𝑖𝑖�𝐿𝐿𝑇𝑇 ≠ 𝑖𝑖,𝛉𝛉𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝�.  12 

Assuming that the sensory observations are obtained with high frequency, we can approximate the 13 

total evidence in favor of a given hypothesis:  14 

� log �𝑝𝑝�𝑥𝑥𝑖𝑖,𝑡𝑡�𝐿𝐿𝑇𝑇 ≠ 𝑖𝑖��
𝐾𝐾

𝑡𝑡=1
≈ 𝐾𝐾 �𝐸𝐸 �log �𝑝𝑝�𝑥𝑥𝑖𝑖,𝑡𝑡�𝐿𝐿𝑇𝑇 ≠ 𝑖𝑖���� (8) 15 

We expect sensory noise to be low compared to the noise in the target and distractor 16 

representations. Then, the following approximation is valid: 17 

𝐸𝐸 �log �𝑝𝑝�𝑥𝑥𝑖𝑖,𝑡𝑡�𝐿𝐿𝑇𝑇 ≠ 𝑖𝑖��� ∝ log�𝑝𝑝∗(𝑠𝑠𝑖𝑖|𝐿𝐿𝑇𝑇 ≠ 𝑖𝑖)� + 𝐶𝐶 (9) 18 

where C is a constant. Similar derivations can be used for the total evidence for the alternative 19 

hypothesis 𝑝𝑝�𝑥𝑥𝑖𝑖,𝑡𝑡�𝐿𝐿𝑇𝑇 = 𝑖𝑖�. 20 

Then, given that a decision is made when log 𝑑𝑑𝑖𝑖 = log𝐵𝐵: 21 

𝐾𝐾 =
log𝐵𝐵 − log � 1

𝑁𝑁 − 1�

𝐸𝐸 �log �𝑝𝑝�𝑥𝑥𝑖𝑖,𝑡𝑡�𝐿𝐿𝑇𝑇 = 𝑖𝑖��� − 𝐸𝐸 �log �𝑝𝑝�𝑥𝑥𝑖𝑖,𝑡𝑡�𝐿𝐿𝑇𝑇 ≠ 𝑖𝑖���
(10) 22 

Given that the target and distractor parameters are independently manipulated in the experiment, 23 

𝐸𝐸 �log �𝑝𝑝�𝑥𝑥𝑖𝑖,𝑡𝑡�𝐿𝐿𝑇𝑇 = 𝑖𝑖��� can be treated as a constant. Similarly, 𝑝𝑝(𝑠𝑠𝑖𝑖|𝐿𝐿𝑇𝑇 = 𝑖𝑖,𝛉𝛉𝑐𝑐𝑐𝑐𝑝𝑝𝑝𝑝) would be 24 

constant as discussed above. Given that 𝑅𝑅𝑅𝑅 ∝ 𝐾𝐾, we can then approximate is as follows: 25 

𝑅𝑅𝑅𝑅 ≈
𝐶𝐶1

𝐶𝐶0 − log 𝑝𝑝∗�𝑠𝑠𝑖𝑖�𝐿𝐿𝑇𝑇 ≠ 𝑖𝑖,𝛉𝛉𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝�
(11) 26 

and 27 

log 𝑝𝑝∗�𝑠𝑠𝑖𝑖�𝐿𝐿𝑇𝑇 ≠ 𝑖𝑖,𝛉𝛉𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝� = 𝐶𝐶0 − 𝐶𝐶1
1
𝑅𝑅𝑅𝑅

 (12) 28 

where 𝐶𝐶0 and 𝐶𝐶1 are constants. In words, there is an inverse linear relationship between the 29 

likelihood that a given stimulus is a distractor (in log-space) and the response times. When this 30 

likelihood increases, response times decrease.  31 

This model provides an important insight, namely, that observers’ representations are monotonically 32 

related to response times. Hence, even though 𝐶𝐶0 and 𝐶𝐶1 are unknown, the relationship between 33 



 16 

the moments (mean, standard deviation, and skewness) of observers’ representations reconstructed 1 

from RT and the true representations would hold under any other monotonic transformation (for 2 

example, RTs are log-transformed and the baseline RTs are subtracted as we do in our analyses).   3 

 4 

  5 
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Supplement 1. Bayesian observer model combining information across locations. 1 

The model reported in the main text presents a simplified version of the decision-making process 2 

assuming that stimuli at each location are analyzed separately. We believe that such a model might 3 

be more realistic as it greatly simplifies the computations that observers have to make. However, for 4 

the sake of completeness, here we briefly describe a more complex conditionally-optimal memory-5 

guided Bayesian observer model. We refer to this model as conditionally optimal for two reasons. 6 

First, a memory-guided observer is by definition not fully optimal in our task, where the test trial 7 

parameters are unrelated to the previous learning trials. However, given that the task parameters 8 

repeat throughout learning trials, using the information from the previous trials might be beneficial 9 

when the observer does not know that the trial parameters have changed. Secondly, we assume that 10 

the observer’s learning or memory about the stimuli features might not be ideal, hence they use the 11 

approximations of feature distributions. We show that under this more complex and more optimal 12 

model, the predictions with respect to the monotonic relationship between the response times and 13 

expected distractor probabilities stay the same. 14 

Task structure. Participants have to locate a target among a set of distractors and indicate if it is in 15 

the top or in the lower part of the stimuli matrix. The experimenter sets the task parameters for 16 

each trial, namely, the target distribution, 𝑝𝑝(𝑠𝑠𝑖𝑖|𝐿𝐿𝑇𝑇 = 𝑖𝑖), and the distractor distribution, 𝑝𝑝(𝑠𝑠𝑖𝑖|𝐿𝐿𝑇𝑇 ≠ 𝑖𝑖), 17 

for each location 𝑖𝑖 = 1 …𝑁𝑁 in the stimuli matrix (with top half having indices from 1 to 𝑁𝑁/2 and the 18 

bottom half from 𝑁𝑁
2

+ 1 to N) as well as the target location (𝐿𝐿𝑇𝑇), to generate the stimuli (𝑠𝑠𝑖𝑖) at each 19 

location. Here, 𝐿𝐿𝑇𝑇 = 𝑖𝑖 and 𝐿𝐿𝑇𝑇 ≠ 𝑖𝑖 indicate that the target is or is not at location i, or in other words, 20 

that the target location is or is not i, respectively.  21 

Ideal observer model. At each moment in time 𝑡𝑡 = 1 …𝐾𝐾 (with K as the decision moment) and at 22 

each location i, the observer obtains sensory observations 𝑥𝑥𝑖𝑖,𝑡𝑡 corrupted by the presence of sensory 23 

noise: 24 

𝑝𝑝�𝑥𝑥𝑖𝑖,𝑡𝑡�𝑠𝑠𝑖𝑖� = 𝑓𝑓𝑉𝑉𝑉𝑉(𝑥𝑥𝑖𝑖; 𝑠𝑠𝑖𝑖 , 𝜅𝜅𝑠𝑠) 25 

where 𝑓𝑓𝑉𝑉𝑉𝑉 is a von Mises distribution density with concentration parameter 𝜅𝜅𝑠𝑠 quantifying the 26 

amount of noise. We assume that the observations are distributed independently at each location 27 

and at each moment in time: 28 

𝑝𝑝(𝐗𝐗|𝐬𝐬) = �𝑝𝑝(𝐱𝐱𝐢𝐢|𝑠𝑠𝑖𝑖)
𝑁𝑁

𝑖𝑖=1

= ��𝑝𝑝�𝑥𝑥𝑖𝑖,𝑡𝑡�𝑠𝑠𝑖𝑖�
𝐾𝐾

𝑡𝑡=1

𝑁𝑁

𝑖𝑖=1

(S13) 29 

To make an optimal decision in a particular task, the observer needs to compare the probability that 30 

a target is located in the upper half of the stimuli matrix with a probability that it is located in the 31 

lower half: 32 

𝑑𝑑 =
𝑝𝑝(𝐶𝐶 = 1|𝐗𝐗)
𝑝𝑝(𝐶𝐶 = 2|𝐗𝐗)

(S14) 33 

where 𝐶𝐶 = 1 and 𝐶𝐶 = 2 correspond to the two hypotheses about the target location. After applying 34 

the log transformation, the decision variable can be expressed as a difference in the amount of 35 

evidence for the two hypotheses: 36 

log 𝑑𝑑 = log 𝑝𝑝(𝐶𝐶 = 1|𝐗𝐗) − log 𝑝𝑝(𝐶𝐶 = 2|𝐗𝐗) (S15) 37 



 20 

The decision time assuming a certain threshold B can then be found as a time K when the decision 1 

variable reaches the threshold. The average decision time can be found by estimating when the 2 

expectation of log 𝑑𝑑 becomes equal to log 𝐵𝐵: 3 

 4 

𝐾𝐾 =
log𝐵𝐵

𝐸𝐸[log 𝑝𝑝(𝐶𝐶 = 1|𝐗𝐗)] − 𝐸𝐸[log 𝑝𝑝(𝐶𝐶 = 2|𝐗𝐗)]
(S16) 5 

The probabilities for each hypothesis 𝐶𝐶 = 1 and 𝐶𝐶 = 2 can be found using the Bayes rule. For 6 

example, for 𝐶𝐶 = 1: 7 

𝑝𝑝(𝐶𝐶 = 1|𝐗𝐗) =
𝑝𝑝(𝐗𝐗|𝐶𝐶 = 1)𝑝𝑝(𝐶𝐶 = 1)

𝑝𝑝(𝐗𝐗)
(S17) 8 

Because the observer does not know what stimuli are presented and only knows the sensory 9 

observations, the likelihood 𝑝𝑝(𝐱𝐱|𝐶𝐶 = 1) needs to be computed by averaging (marginalizing) over the 10 

unknown stimuli values: 11 

𝑝𝑝(𝐗𝐗|𝐶𝐶 = 1) = �𝑝𝑝(𝐗𝐗|𝐬𝐬)𝑝𝑝(𝐬𝐬|𝐶𝐶 = 1)𝑑𝑑𝐬𝐬 (S18) 12 

Because the target can be only present at one location, the likelihood 𝑝𝑝(𝐱𝐱|𝐶𝐶 = 1) is computed by 13 

summing over the possibilities of finding a target at each particular location: 14 

𝑝𝑝(𝐗𝐗|𝐶𝐶 = 1) = � �𝑝𝑝(𝐗𝐗|𝐬𝐬)𝑝𝑝∗(𝐬𝐬|𝐿𝐿𝑇𝑇 = 𝑖𝑖,𝛉𝛉)𝑑𝑑𝐬𝐬
𝑁𝑁
2

𝑖𝑖=1
(S19) 15 

where similarly to the main text, we use an asterisk to denote probability distributions as 16 

approximated by the observer through a set of parameters related to previous and current trials 𝛉𝛉 =17 

{𝛉𝛉𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 ,𝛉𝛉𝑐𝑐𝑐𝑐𝑝𝑝𝑝𝑝  }. That is, we assume that the observer is unaware of the true distributions 𝑝𝑝(𝑠𝑠𝑖𝑖|𝐿𝐿𝑇𝑇 =18 

𝑖𝑖) and 𝑝𝑝(𝑠𝑠𝑖𝑖|𝐿𝐿𝑇𝑇 ≠ 𝑖𝑖) and approximates them instead using the information available.  19 

If a target is at location i, it cannot be anywhere else. Hence: 20 

𝑝𝑝∗(𝐬𝐬|𝐿𝐿𝑇𝑇 = 𝑖𝑖,𝛉𝛉) = 𝑝𝑝∗(𝑠𝑠𝑖𝑖|𝐿𝐿𝑇𝑇 = 𝑖𝑖,𝛉𝛉)� 𝑝𝑝∗�𝑠𝑠𝑗𝑗�𝐿𝐿𝑇𝑇 ≠ 𝑗𝑗,𝛉𝛉�
𝑁𝑁

𝑗𝑗≠𝑖𝑖
(S20) 21 

Using Eq. S20, it can be further shown that: 22 

�𝑝𝑝(𝐗𝐗|𝐬𝐬)𝑝𝑝∗(𝐬𝐬|𝐿𝐿𝑇𝑇 = 𝑖𝑖, 𝛉𝛉)𝑑𝑑𝐬𝐬 = �� �𝑝𝑝�𝐱𝐱j�𝑠𝑠𝑗𝑗�𝑝𝑝∗�𝑠𝑠𝑗𝑗�𝐿𝐿𝑇𝑇 ≠ 𝑗𝑗,𝛉𝛉�𝑑𝑑𝑠𝑠𝑗𝑗
𝑁𝑁

𝑗𝑗
�
∫ 𝑝𝑝(𝐱𝐱i|𝑠𝑠𝑖𝑖)𝑝𝑝∗(𝑠𝑠𝑖𝑖|𝐿𝐿𝑇𝑇 = 𝑖𝑖,𝛉𝛉)𝑑𝑑si
∫ 𝑝𝑝(𝐱𝐱i|𝑠𝑠𝑖𝑖)𝑝𝑝∗(𝑠𝑠𝑖𝑖|𝐿𝐿𝑇𝑇 ≠ 𝑖𝑖,𝛉𝛉)𝑑𝑑si

(S21) 23 

Note that the product in the square brackets is the same for all locations, and the remaining part of 24 

the equation is a ratio of the probability that the measurements at a given location are from the 25 

target against the probability that they are from the distractor, similarly to the model described in 26 

the main text.  27 

The probability that a given stimulus is a target (or a distractor) depends on both the previous and 28 

the current trial: 29 

𝑝𝑝∗(𝑠𝑠𝑖𝑖|𝐿𝐿𝑇𝑇 = 𝑖𝑖,𝛉𝛉) = 𝑝𝑝∗�𝑠𝑠𝑖𝑖�𝐿𝐿𝑇𝑇 = 𝑖𝑖,𝛉𝛉𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝�𝑝𝑝∗(𝑠𝑠𝑖𝑖|𝐿𝐿𝑇𝑇 = 𝑖𝑖,𝛉𝛉𝑐𝑐𝑐𝑐𝑝𝑝𝑝𝑝) (S22) 30 

For each location and each location-specific hypothesis 𝐿𝐿𝑇𝑇 = 𝑖𝑖 and 𝐿𝐿𝑇𝑇 ≠ 𝑖𝑖, the current trial 31 

parameters need to be computed separately because of the nature of the odd-one-out task. A target 32 

is defined as the item most different from the distractors. For simplicity, we assumed that observers 33 



 21 

use the following circular normal approximation for the distractors at the current trial based on the 1 

sensory observations: 2 

𝑝𝑝∗(𝑠𝑠𝑖𝑖|𝐿𝐿𝑇𝑇 ≠ 𝑖𝑖,𝛉𝛉𝑐𝑐𝑐𝑐𝑝𝑝𝑝𝑝) = 𝑓𝑓𝑉𝑉𝑉𝑉�𝑠𝑠𝑖𝑖; 𝜇̂𝜇𝑗𝑗≠𝑖𝑖 , 𝜅̂𝜅𝑗𝑗≠𝑖𝑖� (S23) 3 

In words, when the observer needs to estimate, how likely it is that the stimulus at location i is a 4 

distractor, the observer approximates the distribution of stimuli as a von Mises (circular normal) 5 

distribution based on the sensory observations from other locations.   6 

The observer might use the knowledge that the target distribution in the task design is on average 7 

90° away from the mean of distractors. We again assume a von Mises approximation: 8 

𝑝𝑝∗(𝑠𝑠𝑖𝑖|𝐿𝐿𝑇𝑇 = 𝑖𝑖,𝛉𝛉𝑐𝑐𝑐𝑐𝑝𝑝𝑝𝑝) = 𝑓𝑓𝑉𝑉𝑉𝑉�𝑠𝑠𝑖𝑖; 𝜇̂𝜇𝑗𝑗≠𝑖𝑖 + 90°, 𝜅𝜅𝑇𝑇� (S24) 9 

where 𝜅𝜅𝑇𝑇 is the expected precision of the target distribution. In contrast to the distractor 10 

distribution precision that could be guessed based on the samples on the current trial (𝜅̂𝜅𝑗𝑗≠𝑖𝑖), the 11 

target distribution precision cannot be estimated on a single trial (there is only one target stimulus in 12 

a given trial) and has to be based on the other sources of information (e.g., learning throughout the 13 

experiment).  14 

Given that the measurement noise is independent across locations, the likelihood of the hypothesis 15 

C = 1 can be further expressed as: 16 

𝑝𝑝(𝐗𝐗|𝐶𝐶 = 1) = �� ��𝐱𝐱𝑗𝑗�𝑠𝑠𝑗𝑗�𝑝𝑝∗�𝑠𝑠𝑗𝑗�𝐿𝐿𝑇𝑇 ≠ 𝑗𝑗,𝛉𝛉�𝑑𝑑𝑠𝑠𝑗𝑗
𝑁𝑁

𝑗𝑗=1
��

∫𝑝𝑝(𝐱𝐱𝑖𝑖|𝑠𝑠𝑖𝑖)𝑝𝑝∗(𝑠𝑠𝑖𝑖|𝐿𝐿𝑇𝑇 = 𝑖𝑖,𝛉𝛉)𝑑𝑑𝑠𝑠𝑖𝑖
∫ 𝑝𝑝(𝐱𝐱𝑖𝑖|𝑠𝑠𝑖𝑖)𝑝𝑝∗(𝑠𝑠𝑖𝑖|𝐿𝐿𝑇𝑇 ≠ 𝑖𝑖,𝛉𝛉)𝑑𝑑𝑠𝑠𝑖𝑖

𝑁𝑁
2

𝑖𝑖=1
(S25) 17 

Then, assuming that the prior probability of each decision alternative is the same, the decision 18 

variable can be expressed in log-space as: 19 

log 𝑑𝑑 = log��
∫𝑝𝑝(𝐱𝐱𝑖𝑖|𝑠𝑠𝑖𝑖)𝑝𝑝∗(𝑠𝑠𝑖𝑖|𝐿𝐿𝑇𝑇 = 𝑖𝑖,𝛉𝛉)𝑑𝑑𝑠𝑠𝑖𝑖
∫𝑝𝑝(𝐱𝐱𝑖𝑖|𝑠𝑠𝑖𝑖)𝑝𝑝∗(𝑠𝑠𝑖𝑖|𝐿𝐿𝑇𝑇 ≠ 𝑖𝑖,𝛉𝛉)𝑑𝑑𝑠𝑠𝑖𝑖

𝑁𝑁
2

𝑖𝑖=1
� − log ��

∫𝑝𝑝(𝐱𝐱𝑖𝑖 |𝑠𝑠𝑖𝑖)𝑝𝑝∗(𝑠𝑠𝑖𝑖|𝐿𝐿𝑇𝑇 = 𝑖𝑖,𝛉𝛉)𝑑𝑑𝑠𝑠𝑖𝑖
∫𝑝𝑝(𝐱𝐱𝑖𝑖 |𝑠𝑠𝑖𝑖)𝑝𝑝∗(𝑠𝑠𝑖𝑖|𝐿𝐿𝑇𝑇 ≠ 𝑖𝑖,𝛉𝛉)𝑑𝑑𝑠𝑠𝑖𝑖

𝑁𝑁

𝑖𝑖=𝑁𝑁2+1
� (S26) 20 

The decision time assuming a certain threshold B can then be found as a time K when the decision 21 

variable reaches the threshold.  22 

Simulations. To estimate the behavior of the observer using this model, we simulated the decision-23 

making process and estimated the mean response times while varying the properties of the 24 

distractor representation 𝑝𝑝∗�𝑠𝑠𝑖𝑖�𝐿𝐿𝑇𝑇 ≠ 𝑖𝑖,𝛉𝛉𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝�. The task parameters were based on the actual 25 

experiment design. We used 36 stimuli for each trial with one stimulus being the test target (𝑠𝑠𝐿𝐿𝑇𝑇) 26 

and the rest being the distractors. The distractors on each simulated trial were distributed as 27 

𝑝𝑝(𝑠𝑠𝑖𝑖|𝐿𝐿𝑇𝑇 ≠ 𝑖𝑖) = 𝑓𝑓𝑉𝑉𝑉𝑉(𝑠𝑠𝑖𝑖; 𝜇𝜇𝐷𝐷 ,𝜅𝜅𝐷𝐷) where 𝜇𝜇𝐷𝐷~𝑈𝑈�𝑠𝑠𝐿𝐿𝑇𝑇 + 60°; 𝑠𝑠𝐿𝐿𝑇𝑇 + 120°� (that is, the mean of 28 

distractors is set to 60° to 120° away from the test stimulus) and 𝜅𝜅𝐷𝐷 = 8.7 (approximately equivalent 29 

to the standard deviation of 10° in orientation space). The sensory observations were assumed to be 30 

noisy (𝜅𝜅𝑠𝑠 = 2, approximately equivalent to the standard deviation of 24° in orientation space; note 31 

that this is the noise level for samples collected at each moment in time). The observers’ target 32 

representation was assumed to be linked with to the distractor representation as 33 

𝑝𝑝∗�𝑠𝑠𝑖𝑖�𝐿𝐿𝑇𝑇 = 𝑖𝑖,𝛉𝛉𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝� = 𝑓𝑓𝑉𝑉𝑉𝑉 �𝑠𝑠𝑖𝑖;𝜇𝜇𝐷𝐷𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 , 𝜅𝜅𝑇𝑇� with 𝜅𝜅𝑇𝑇 = 3.35 (based on a normal approximation to a 34 

uniform target distribution with 60° range used in the experiments). The same 𝜅𝜅𝑇𝑇 was used for 35 

target-related computations based on the current trial data (Eq. S24). The decision threshold was 36 

set to log𝐵𝐵 = 4.60 assuming a 1% probability of error if the observer assumptions are correct. For 37 



 22 

each test target from 1° to 180° in half-degree steps, we simulated 56 trials for each combination of 1 

distractor representation parameters.  2 

We ran simulations for the wrapped skewed normal distribution with the mean varied from -60° to 3 

60° in 20° steps, while the standard deviation varied from 20° to 60° in 10° steps, and skew varied 4 

from -10 to 10 in steps of 2. The results of the simulations (Figure S2) confirmed the findings 5 

obtained with a simplified model: the means are recovered precisely while for standard deviation 6 

and skewness the monotonic relationship holds.  7 

  8 
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 1 

  2 
Figure S1. Simulated parameters under the simplified Bayesian observer model. We simulated the response times under the assumptions 
of the simplified Bayesian observer model described in the main text and applied the same approach as used for the real data to see if the 
assumed monotonic relationship between the true parameters and the recovered parameters holds. Firstly, we used a simple wrapped 
normal (top) with means varying from -80° to 80° in 20° steps and standard deviation from 5° to 60° in 5° steps. For each parameter 
combination the RT were computed using Eq. 2. We then estimated the parameters of the recovered distribution. As is evident from the 
plots, the mean estimates were identical to the true mean while the standard deviation was overestimated but the overall monotonic 
relationship held. The skewness estimate was at zero as expected for the symmetric wrapped normal distribution. Secondly, we simulated 
the data using the skewed normal distribution (Pewsey, 2008) with means again varying from -80° to 80° in 20° steps, scale parameter 
varying from 5° to 60° in 5° steps, and skewness parameter varying from -10 to 10 in steps of 1. For the means and standard deviations, 
the conclusions were the same as for the wrapped normal distribution. Similarly, skewness estimates followed monotonically the changes 
in the true skewness parameter (note that the sign of the estimated circular skewness is the opposite of the skewness parameter of the 
skewed wrapped normal distribution because of how it is defined, see Pewsey, 2004). In sum, the mean estimates match the true means, 
and the standard deviation and skewness estimates monotonically depend on the true standard deviation and the skewness parameters.  
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Figure S2. Simulated parameters under the more optimal Bayesian observer model. We simulated the response times under the 
assumptions of the more complex Bayesian observer model described in the Supplement applied the same approach as used for the real 
data to see if the assumed monotonic relationship between the true parameters and the recovered parameters holds. The results were 
similar to the simulations with the simplified model (Figure S1). The mean estimates were identical to the true mean, while for the 
standard deviation and skewness the monotonic relation holds (note that the sign of the estimated circular skewness is the opposite of the 
skewness parameter of the skewed wrapped normal distribution because of how it is defined, see Pewsey, 2004). In sum, the mean 
estimates match the true means, and the standard deviation and skewness estimates monotonically depend on the true standard 
deviation and the skewness parameters. 


